8.12. Элементы, заменяемые на автомобиле при его техническом обслуживании
8.12.1. Автомобиль ГАЗ-3309
При обслуживании автомобиля подлежат замене следующие элементы:
1. Неразборный фильтр тонкой очистки топлива.
Обозначение фильтра — ФТ020–1117010.
Обслуживание фильтра тонкой очистки топлива состоит в периодическом сливе отстоя.
Для слива отстоя необходимо отвернуть пробку фильтра и слить отстой до появления чистого топлива, после чего завернуть пробку.
Для удаления воздуха необходимо:
- отвернуть пробку 3 (рис. 8.9) на корпусе топливного насоса и отвернуть на 1–2 оборота штуцер 1 на фильтре тонкой очистки топлива;
- прокачать систему с помощью подкачивающего насоса 2, при появлении топлива завернуть вначале штуцер 1, затем пробку 3.
Рис. 8.9. Удаление воздуха из системы топливоподачи:
1 — штуцер; 2 — насос подкачивающий; 3 — пробка
2. Фильтрующий элемент воздушного фильтра.
Обозначение элемента — 4301–1109013–10, 4301.1109013–20, GB-502 или ЕF-43К.
3. Неразборный масляный фильтр.
Обозначение фильтра — ФМ009–1012005 или М5101.
При установке фильтра на коропус резиновую уплотнительную прокладку необходимо смазать моторным маслом и завернуть фильтр на корпус.
После касания прокладкой корпуса довернуть фильтр еще на ¾ оборота. Установку фильтра производить только усилием рук.
Вместо фильтра ФМ009–1012005 или М5101 допускается установка фильтров-заменителей Х149 (Франция) и L37198 Италия) с основными размерами:
- по диаметру — 92–96 мм;
- по высоте — 140–153 мм;
- по посадочной резьбе ¾ -16UNF.
4. Фильтрующий элемент ШНКФ 453473 бачка системы ГУР.
При установке неразборного бачка ЯМЗ.993.003 системы ГУР, бачок заменяется в сборе.
5. Фильтр предварительной очистки топлива.
Обозначение фильтра — PRELINE 270. Обслуживание фильтра предварительной очистки топлива состоит в периодическом сливе отстоя воды и частиц из водосборника.
Для слива отстоя необходимо отвернуть пробку водосборника и слить отстой до появления чистого топлива, после чего завернуть пробку.
При загрязнении заменить сменный фильтрующий элемент PRELINE 270 на новый.
Что такое система CommonRail
Одной из причин быстрого роста популярности и востребованности дизельных двигателей стало изобретение нового способа подачи топлива, который получил название CommonRail(на практике используются разные написания – как раздельное, так и слитное). Разработка выполнена в 90-е годы инженерами одного из мировых лидеров по производству ДВС – германской корпорации BOSCH.
Сегодня она используется в подавляющем большинстве дизельных двигателей и, фактически, стала стандартом этого типа силовых агрегатов. Другие варианты топливных систем – с рядным или распределительным ТНВД, а также насосами –форсунками – применяются все реже и только для отдельных моделей транспортных средств или специальной техники.
Термин CommonRail переводится как «общая магистраль» или «общая рамка», что наглядно демонстрирует ключевую конструктивную особенность конструкции дизеля. Она заключается в комплектовании двигателя дополнительным элементом – общей магистралью, соединенной с форсунками и отдельным ТНВД. За счет последнего удается добиться быстрого достижения требуемого уровня давления в топливной системе и поддержания стабильного значения этого параметра.
Вместе с тем это приводит к еще более высоким требованиям к качеству дизельного топлива и устанавливаемых фильтров, а также некоторому удорожанию электроники, необходимой для эффективной эксплуатации двигателя. Но получаемый на выходе эффект в части повышения КПД, комфортности использования и производительности многократно компенсирует незначительное повышение стоимости дизеля.
Регулировка топливной аппаратуры
Этот процесс заключается в том, чтобы диагностировать и отремонтировать форсунки, а также ТНВД. Выполнить такую процедуру в домашних условиях очень сложно, ведь она не только требует определенных умений и навыков – для ее выполнения могут понадобиться специальные инструменты.
Конечно, некоторые операции по ремонту топливной системы можно попытаться осуществить самостоятельно. Однако в таком случае возможен риск повреждения деталей, а значит, усугубления ситуации. Да и вообще, для этого процесса нужно специальное дорогостоящее оборудование, которое не целесообразно покупать только для одного единичного случая.
Устройство форсунки двигателя ЯМЗ
Форсунка дизелей марки «ЯМЗ» состоит из корпуса, в котором имеется центральное отверстие под штангу и наклонный топливный канал; распылителя с тщательно обработанным осевым отверстием под иглу и топливных каналов. В нижней части распылителя имеются четыре сопла, кольцевая проточка и два глухих отверстия под штифты. Игла распылителя имеет цилиндрическую направляющую часть, конусные пояски в средней и нижней частях. Распылитель с иглой крепится к корпусу накидной гайкой. В верхней боковой части находится прилив с резьбовым отверстием под топливный штуцер с фильтрующей сеткой. В центральной верхней части имеется резьба под резьбовую втулку, в центральной части которой находится резьбовое отверстие под регулировочный винт с контргайкой. Нижняя часть винта является верхней опорной тарелкой под возвратную пружину иглы распылителя.
На штанге в верхней части крепится нижняя опорная тарелка пружины, в нижней части запрессован шарик для плотной посадки иглы на седло. Резьбовая втулка в верхней части закрыта колпач-ковой гайкой с резьбовым отверстием под дренажный трубопровод.Топливо подводится к форсунке через штуцер с сетчатым фильтром и поступает по наклонному каналу корпуса в кольцевую проточку распылителя. Затем топливо по трем каналам проходит в кольцевую полость (средней части распылителя), расположенную под утолщенной (с конусным пояском) частью иглы. Под действием топлива, поступающего в полость, игла поднимается, сжимая возвратную пружину. Сопла распылителя открываются, и топливо впрыскивается в камеру сгорания. После окончания впрыска давление топлива падает и под действием возвратной пружины игла плотно садится на седло в распылителе. Давление впрыска топлива регулируется регулировочным винтом с контргайкой в резьбовой втулке затяжкой возвратной пружины иглы распылителя. Топливо, просочившееся между иглой и распылителем, отводится дренажным трубопроводом в бак.
Фильтры грубой и тонкой очистки топлива
Очистка топлива от механических примесей и воды происходит в фильтрах грубой 9 и тонкой 3 очистки. Фильтр грубой очистки, устанавливаемый перед основным топливоподкачивающим насосом 8, задерживает частицы размерами 20… 50 мкм, на долю которых приходится 80…90 % массы всех примесей. Фильтр тонкой очистки, помещаемый между основным топливоподкачивающим насосом и ТНВД, задерживает примеси размерами 2…20 мкм.
В настоящее время в силовых установках с дизелями применяют следующие типы фильтров грубой очистки:
- сетчатые
- ленточно-щелевые
- пластинчато-щелевые
У сетчатых фильтров фильтрующим элементом является металлическая сетка. Из нее можно образовывать концентрические цилиндры, через стенки которых продавливается топливо, или дискообразные секции, нанизанные на центральную трубу с отверстиями в стенке, соединенную с выходным трубопроводом.
В ленточно-щелевом фильтре фильтрующим элементом служит гофрированный стакан с намотанной на него профильной лентой. Через щели между витками ленты, образованными за счет ее выступов, топливо из пространства, окружающего фильтрующий элемент, попадает во впадины между гофрированным стаканом и лентой, а затем — в полость между дном и крышкой стакана, откуда удаляется через выпускной трубопровод.
Фильтрующий элемент пластинчато-щелевого фильтра представляет собой полый цилиндр, составленный из одинаковых тонких кольцевых дисков с отгибными выступами. За счет этих выступов между дисками образуются зазоры. Топливо поступает к наружным и внутренним поверхностям цилиндра и, проходя через щели между дисками, очищается. Очищенное топливо через торцевые отверстия в дисках направляется в верхнюю часть фильтра к выходному отверстию.
Очень часто фильтр грубой очистки совмещают с отстойником для воды, находящейся в дизельном топливе. В этом случае необходимо периодически отворачивать пробку отстойника для удаления из него скопившейся воды.
В фильтрах тонкой очистки в качестве фильтрующих элементов обычно используют картонные элементы типа «многолучевая звезда» или пакеты из картонных и фетровых дисков. Реже применяют каркасы с адсорбирующей механические примеси набивкой (например, минеральной ватой), каркасы с тканевой или нитчатой обмоткой и др.
В процессе эксплуатации ТС топливные фильтры загрязняются, что приводит к увеличению их сопротивления. Чтобы подача топлива к ТНВД не прекратилась, необходимо фильтр грубой очистки периодически промывать, а фильтрующий элемент фильтра тонкой очистки заменять новым.
Особенности дизельного топлива
Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.
Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.
Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.
Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью
Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: летнее дизельное топливо, зимний дизель и арктическое дизельное топливо
Топливоподкачивающий насос
Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:
- шестеренными
- плунжерными (поршневыми)
- коловратными (пластинчатого типа)
Как правило, применяются плунжерные и коловратное насосы.
Плунжерный топливоподкачивающий насос
Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.
При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.
Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.
Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.
Коловратный топливоподкачивающий насос
В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.
Аккумуляторная система питания топливом
Современные жесткие требования к уровню выбросов вредных веществ двигателями внутреннего сгорания вынудили конструкторов дизелей искать новые решения в области топливной аппаратуры для них. Дело в том, что даже самые совершенные ТНВД не могут обеспечить такого давления топлива, при котором оно распылялось бы настолько мелко, что могло бы полностью сгореть в камере сгорания.
Неполное сгорание приводит к большему расходу топлива, а самое главное — к повышению в отработавших газах концентрации вредных веществ, в частности сажи. В связи с этим в настоящее время для дизелей с непосредственным впрыском все чаще применяется так называемая аккумуляторная система питания топливом.
Основное отличие такой системы от «классической» заключается в наличии общей топливной рампы (аккумулятора давления), в которой во время работы двигателя создается очень высокое давление.
Топливная рампа соединена трубопроводами высокого давления с электронно-управляемыми топливными форсунками, иглы которых перемещаются с помощью электромагнитов по сигналам от компьютера (электронного блока) управления двигателем. Такая система питания топливом позволяет оптимизировать работу двигателя практически по всем параметрам.
Предпусковой топливоподкачивающий насос
Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.
Признаки неисправности дизельного двигателя
Запуск двигателя затруднен
Износ нагнетательных элементов насоса высокого давления. Неправильный угол опережения подачи топлива в двигателе. Износ распылителей, вызывающий плохое распыление топлива. Слишком низкое давление впрыска.
Нехватка топлива перед насосом высокого давления из-за попадания воздуха в систему подачи топлива. Неисправности подкачивающего топливного насоса. Слишком малая доза топлива при запуске, вызванная неправильной работой регулятора. Загустение топлива зимой. Неисправны свечи накаливания.
Снижение мощности двигателя
Износ прецизионных элементов топливного насоса высокого давления или регулятора. Неправильная регулировка насоса или всережимного регулятора. Неправильный угол опережения впрыска. Износ или повреждение распылителей. Чрезмерное снижение давления впрыска. Недостаточное количество топлива, подаваемого системой нагнетания, из-за засорения топливного фильтра, недостаточной производительности подкачивающего топливного насоса или попадания воздуха в топливную систему.
Повышенный расход топлива
Неверный угол опережения впрыска. Износ нагнетательных элементов насоса высокого давления. Неправильная регулировка насоса высокого давления. Износ или повреждение распылителей. Слишком большое снижение давления впрыска. Загрязнен воздушный фильтр. Утечка топлива. Недостаточная компрессия.
Черный дымный выхлоп
Плохое смесеобразование в камере сгорания из-за нагара или неплотного закрытия клапанов. Поздний впрыск топлива. Плохое распыление топлива форсунками. Неверные зазоры в клапанах. Недостаточная компрессия.
Серый или белый дымный выхлоп
Неверное опережение впрыска. Недостаточная компрессия. Пробита прокладка головки блока. Переохлаждение двигателя.
Жесткая работа двигателя
Слишком ранний впрыск топлива. Большая разница между дозами топлива, впрыскиваемого в разные цилиндры двигателя. Неправильная работа некоторых форсунок. Недостаточная компрессия.
Перегрев двигателя
Неправильный угол опережения впрыска. Плохое распыление топлива форсунками (струя вместо «факела»).
Не развивается полная мощность двигателя
Короткий ход у педали акселератора, неправильно отрегулирована тяга педали акселератора. Загрязнен воздушный фильтр. Воздух в системе питания. Повреждены топливопроводы. Неисправны крепления распылителей (форсунок). Распылители неисправны. Сбит угол опережения впрыска топлива. Неисправен топливный насос высокого давления.
Повышенный расход топлива
Негермётична система питания. Забит топливопровод слива (от насоса к топливному баку). Высокие обороты холостого хода или же сбито опережение впрыска. Плохо работает двигатель. Неисправны распылители, неисправны форсунки. Неисправен топливный насос высокого давления.
Повышенный шум двигателя
Загрязнения в системе питания, вследствие чего не работают распылители. Уплотнительные шайбы под распылителями отсутствуют или плохо установлены, распылитель слишком сильно (слишком слабо) завернут в головку цилиндров. Воздух в системе питания.
Неравномерная работа двигателя на холостом ходу
Неправильно установлены обороты холостого хода. Затруднен ход педали акселератора. Ослаб топливопровод подачи топлива между топливным насосом высокого давления и топливным фильтром. Повреждена опорная пластина насоса высокого давления. Неисправности в подаче топлива. Неисправны распылители, неисправны форсунки. Неправильное опережение впрыска.
Колебания частоты оборотов коленчатого вала
Износ регулятора оборотов. Разрегулирование или износ системы впрыска. Чрезмерное сопротивление перемещению элементов в системе регулирования. Попадание воздуха в топливную систему. Избыточное давление газов в картере.
Внезапная остановка двигателя
Смещение угла опережения нагнетания (нарушение соединения насоса с приводом). Засорение топливного фильтра и нехватка топлива, подаваемого в насос. Отсутствие подачи топлива, вызванное повреждением топливного насоса высокого давления или подкачивающего насоса. Повреждение трубопровода впрыска. Износ и перекос поршня-разделителя, ротора или поршней насоса высокого давления.
Часто выходят из строя калильные свечи
Неисправны форсунки в соответствующих цилиндрах.
Невозможно заглушить двигатель
Неисправен запорный электромагнитный клапан.
Повышается уровень моторного масла в картере
Течь через уплотнитель цепного или шестеренчатого привода насоса высокого давления.
Слабое торможение двигателем
Засорены сливные топливопроводы. Неверно установлены ускоренные обороты холостого хода.
Топливный насос высокого давления (ТНВД)
(18—20 МПа) подает через форсунки в камеру сгорания топливо в строго определенные моменты и в определенном количестве в зависимости от режима работы двигателя. На автомобильных двигателях применяют ТНВД золотникового типа с постоянным ходом плунжера и регулировкой окончания подачи топлива. Число секций топливного насоса соответствует числу цилиндров двигателя. Каждая секция обслуживает один цилиндр. Привод топливных насосов осуществляется от зубчатых колес распределительного вала. На двигателях марки «ЯМЗ» применяются рядные топливные насосы , которые располагаются между рядами цилиндров. На двигателях марки «КамАЗ» — двухрядные V-образные топливные насосы.ТНВД двигателей марки «ЯМЗ» состоит из корпуса с крышками, внутри корпуса имеется горизонтальная перегородка, в которой выполнены гладкие отверстия с пазами под роликовые толкатели. В верхней части корпуса имеются резьбовые отверстия крепления насосных секций, топливные каналы, отверстие крепления рейки поворота плунжеров. В нижней части корпуса расположен кулачковый вал привода насосных секций. Роликовый толкатель в верхней части имеет регулировочный болт с контргайкой.Насосная секция включает в себя плунжер и гильзу, соединенные вместе, которые образуют плунжерную пару. Плунжер диаметром 9 мм имеет ход 10 мм. Для создания высокого давления зазор между плунжером и гильзой составляет 0,00015—0,002 мм. Положение гильзы в насосе относительно топливных каналов фиксировано стопорным винтом. В верхней части гильзы имеется впускное и перепускное отверстия. Плунжер в верхней части имеет осевое и радиальное отверстия. От радиального отверстия плунжера выполнены две спиральные канавки. На нижнем конце плунжера имеется два выступа, входящих в пазы поворотной втулки, которая поворачивает плунжер, также имеется кольцевая проточка для опорной тарелки возвратной пружины плунжера. Другой конец пружины упирается в верхнюю тарелку, установленную в кольцевой выточке корпуса. На поворотной втулке крепится зубчатый хомутик, находящийся в зацеплении с рейкой поворота плунжеров. Над гильзой плунжера располагается нагнетательный клапан с седлом, упором и возвратной пружиной. Насосная секция в корпусе насоса крепится штуцером. От штуцера через ниппель топливо поступает по топливопроводу высокого давления к форсунке. 1 МПа начинает открываться нагнетательный клапан. Клапан полностью открыт при давлении 1,8 МПа. Плунжер продолжает двигаться вверх, давление топлива в надплунжерном пространстве растет. При достижении требуемого для впрыска топлива давления (17—20 МПа) игла распылителя форсунки поднимается и происходит впрыск топлива в цилиндр.
Плунжер движется вверх, поддерживая давление впрыска топлива. Как только отсечная кромка спиральной канавки совместится с перепускным отверстием давление топлива резко падает, игла распылителя форсунки под действием возвратной пружины садится в седло. Впрыск топлива прекращается. Одновременно нагнетательный клапан под действием возвратной пружины садится в седло, объем пространства за клапаном увеличивается и происходит отсечка подачи топлива. Конусный поясок нагнетательного клапана притерт к седлу и надежно изолирует надплунжерное пространство от топливопровода высокого давления, поддерживая в нем избыточное давление топлива, что обеспечивает стабильность при малой подаче топлива.Плунжер какое-то время еще продолжает двигаться вверх, обеспечивая гарантированный впрыск топлива. Кулачок сбегает с ролика толкателя и под действием возвратной пружины плунжер начинает двигаться вниз, надплунжерное пространство заполняется топливом.Режим работы дизеля зависит от количества топлива, подаваемого в цилиндры секциями насоса за один ход плунжера. При повороте плунжеров во втулках на некоторый угол изменяется количество подаваемого топлива.На многоцилиндровых двигателях из-за применения рядного насоса увеличивается длина кулачкового вала. Применение V-образных насосов позволяет уменьшить длину кулачкового вала, повысить его жесткость и увеличить давление впрыска до 70 МПа.