10 характерных неисправностей генератора и признаки их проявления

Типовая конструкция электрических моторов

Конструкционное исполнение электромоторов одинаковое для всех классификаций. Силовые механизмы оснащены неподвижным элементом – статором, и вращающимся – ротором, в некоторых видах – якорем. Формирование кругового движения ротора происходит путем воздействия магнитного поля неподвижного компонента на вращающийся элемент (ВЭ).

В статорных обмотках протекают электрические токи. Если обмотки исправны, тогда по ним проходят номинальные расчетные токи. Последние создают магнитное поле наиболее оптимальной величины. Поломка провоцирует ухудшение сопротивления проводников, что приводит к созданию короткого замыкания, межвиткового замыкания, токов утечек. Все упомянутое отрицательным образом сказывается на функциональных возможностях прибора.

Между статичным и вращающимся элементами предусмотрен минимальный зазор, отделяющий детали коллекторного двигателя (КД). Он нарушается:

  • разбитыми или изношенными подшипниками;
  • абразивными и механическими частицами, попадавшими внутрь;
  • производственным браком, неправильным техническим обслуживанием с последующей некачественной сборкой.

Соприкосновение статора и ротора запускает разрушительные процессы – формируется дополнительный механический износ. Это усложняет диагностику и ремонт электрических установок с коллекторными узлами. Сюда же относится попытка разборки сборки агрегатов «кустарными» инструментами. Для обслуживания необходимо использовать специальное оборудование, предотвращающее повреждение валовых граней.

После осуществления разборки проверяются люфты, свободный ход подшипников – их чистота, количество смазки, посадка. Виду особой конструкции КД, дополнительно проверяются пластины, щетки – части могут быть сильно изношенными, что влияет на работоспособность мотора, оснащенного коллекторным узлом.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.
Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

Электродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

  • с параллельным возбуждением;
  • последовательным;
  • смешанным.

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат). Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Как устроен генератор автомобиля?

Если же речь зашла об автомобильном генераторе, его возможных поломках, то неплохо было бы разобраться в устройстве и с чего он состоит. Как правило, современные автомобили оснащены генераторами переменного тока со встроенным выпрямителем. В результате чего получаем постоянный ток.

Все электроприборы легкового автомобиля рассчитаны на постоянный ток генератора, который в наше время может быть на 12V или 48V. Поэтому заранее стоит разобраться с каким питанием в машине предстоит работать. Соответственно нельзя с 12V ставить приборы на 48V (он же мягкий гибрид) и в обратном порядке.

По статистике около 95% всех автомобилей с ДВС построены на основе 12V генератора. Средний рабочий диапазон генератор составляет от 13,8 до 14,8V. Это все из-за того, что генератор напрямую связан с двигателем и работает в зависимости от оборотов самого агрегата (вал генератора вращается медленнее или быстрее). Для того, чтобы сгладить прыжки напряжения в генераторе установлено реле-регулятор напряжения. Оно же по сути стабилизатор. В стандартный набор генератор автомобиля входят такие детали:

  • шкив;
  • передняя и задняя крышка (корпус);
  • статор;
  • ротор;
  • передний и задний подшипники;
  • диодный мост (выпрямитель);
  • регулятор напряжения;
  • защитный кожух.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.


Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.


Рис. 5. Схема подключения генератора к бортовой сети авто

Замыкание обмотки возбуждения на корпус рото­ра

При замыкании на корпус часть или вся обмотка возбуждения закорачивается, вследствие чего генератор не возбуждается. Чаще всего обмотка замыкается на корпус в местах вывода ее концов к контактным кольцам ротора. Замыкание обмотки на корпус вызы­вает увеличение силы тока в цепи регулятора напря­жения.

Этот вид повреждения определяют контрольной лампой напряжением 220 В. Один провод соединяют с любым контактным кольцом, а другой — с сердечни­ком или валом ротора. Лампа будет гореть, когда об­мотка замкнута на корпус. Если невозможно изолиро­вать обмотку от корпуса, то ее заменяют.

Неисправности генератора — признаки, диагностика, причины, проверка

Калькулятор перевода силы тока в мощность

Перевести сколько ампер у квт онлайн. Калькулятор перевода силы тока ампер в мощность ватт

Неисправности электрооборудования автомобиля встречаются весьма часто и занимают одно из лидирующих мест в списке поломок. Их можно условно поделить на неисправности источников тока (аккумуляторов, генераторов) и неисправности потребителей (оптика, зажигание, климат и т.д.). Основными источниками электропитания автомобиля являются аккумуляторные батареи и генераторы. Неисправность каждого из них ведет к общей неисправности автомобиля и эксплуатации его в ненормальных режимах, а то и вовсе — к обездвиживанию автомобиля.

В электрооборудовании автомобиля аккумулятор и генератор работают в неразрывном тандеме. Если выйдет из строя одно — через некоторое время выйдет из строя и другое. Например, разрушившийся аккумулятор приводит к увеличению зарядного тока генератора. А это влечет за собой неисправность выпрямителя (диодного моста). В свою очередь, при неисправности регулятора напряжения, поступающего от генератора, может увеличиться зарядный ток, что неизбежно приведет к систематической перезарядке батареи, «выкипанию» электролита и скорому разрушению.

Отклонение напряжения питающей сети от номинального значения.

Напряжение сельских электрических сетей колеблется в значительных пределах, официально узаконено отклонение напряжения на ±7,5% от номинального. Однако эти отклонения бывают значительно больше. При повышенном напряжении сети активная сталь машины равномерно перегревается даже при отсутствии нагрузки, двигатель потребляет из сети повышенный намагничивающий ток. При значительных повышениях напряжения изоляция обмотки статора разрушается вследствие перегрева ее от высокой температуры активной стали и большой величины намагничивающего тока. Эксплуатировать электродвигатели при повышенных напряжениях не рекомендуется.
При пониженном напряжении сети активная сталь машины не перегревается, а обмотки перегреваются, так как двигатель потребляет повышенный ток при поминальной нагрузке. В случае понижения напряжения необходимо уменьшить нагрузку на двигатель, чтобы он потреблял из сети номинальный ток. При значительных уменьшениях напряжения затрудняется пуск двигателя — резко уменьшается его пусковой момент. При длительных понижениях напряжения сети его следует повысить перестановкой анцапф силового трансформатора. Понижение напряжения возможно также из-за недостаточного сечения линии электропередачи. В этом случае повысить напряжение можно, увеличив сечение линии или заменив марки проводов (например, вместо алюминиевых медные такого же сечения). При замене сечения или марки проводов следует учитывать механическую прочность опор линии электропередач, если новые провода тяжелее старых.

Установка и замена генератора

При необходимости замены или ремонта генератора производят его демонтаж в следующем порядке:

  1. Отсоединение минусовой клеммы аккумуляторной батареи.
  2. Снятие ремня привода генератора со шкива.
  3. Выворачивание болта регулировки и крепления устройства на натяжной планке.
  4. Отсоединение колодки жгута проводов от корпуса генератора.
  5. Отсоединение провода от вывода генератора.
  6. Отворачивание и извлечение болтов крепления генератора.
  7. Извлечение генератора из подкапотного пространства.

Установка нового или отремонтированного генератора выполняется в обратном порядке, после чего производится правильная регулировка натяжения ремня.

Признаки неисправности генератора

Если с аккумуляторной батареей возникают проблемы, то надо проверить работу не только ее, но также и генератора. Не редки ситуации, при которых последний, с виду, работает нормально. Однако, АКБ заряжается недостаточно. Или, наоборот, из-за слишком большого заряда, закипает электролит. Надо определить, какое напряжение подается на банки. Т.е., проверить генератор.

Признаки того, что в работе генератора есть неисправности:

  • На панели приборов светится иконка АКБ.
  • Батарея кипит либо не заряжается.
  • Тусклый свет фар и габаритных огней.
  • В области генератора прослушиваются шумы, скрежет, свист.

Для проверки работы генератора надо осмотреть приводной ремень, в частности, проверить его натяжение

После чего – обратить внимание на провода, соединения, клеммы, шкивы, ролики и пр. Если претензий нет, тогда следует провернуть ротор и послушать, не появятся ли сторонние шумы. При их отсутствии, можно переходить к замерам параметров тока

При их отсутствии, можно переходить к замерам параметров тока.

Внутренний обрыв одной фазы обмотки статора.

При соединении обмотки звездой внутренний обрыв одной фазы дает такие же результаты, как при обрыве одной фазы питающей сети. Соединяя обмотку статора треугольником, внутренний обрыв одной фазы трудно заметить сразу. В этом случае обмотки двух целых фаз двигателя окажутся подключенными к сети по схеме открытого треугольника, как показано на рисунке 114. Током, протекающим по обмотке статора, создается вращающееся магнитное поле, и двигатель хорошо берет с места, развивает нормальную скорость. Во время работы под нагрузкой двигатель потребляет из сети повышенный ток: две фазы статора, оставшиеся в работе, перегреваются. Двигатель потребляет из сети больше энергии, чем в нормальном режиме, и в отдельных случаях может развить момент, близкий к номинальному при сильном перегреве двух работающих фаз. Нередко обмотка двигателя полностью выходит из строя при работе двигателя по схеме открытого треугольника. Указанную неисправность можно определить, измерив линейный ток в фазах работающего двигателя. Ток в одной из фаз при открытом треугольнике примерно в 1,7 раза больше тока двух других фаз.

В каком ухе жужжит?

Выражение «А в каком ухе у меня жужжит?», произносимое Фрекен Бок в известном мультике, давно перешло в разряд народного творчества. И для водителя эта фраза является очень актуальной, так как жужжать и свистеть может все и отовсюду.

И самая главная задача водителя – научиться определять максимально близко к истине, что же издает посторонние звуки. Если в Ваши планы не входит заезжать на станцию техобслуживания при каждом постороннем звуке, издаваемом машиной, то нужно учиться распознавать эти звуки и учиться их устранять своими руками.

Если в машине установлен клиноременный привод, то можно смело говорить о наличии трения, которого не должно быть. А это в свою очередь означает, что некоторые поверхности имеют дефекты, которые придется устранять.

Причиной возникновения свиста может стать деформация ремней, подшипников и прочих деталей под воздействием:

  • повышенной влажности воздуха;
  • изменившейся рабочей температуры;
  • износ под влиянием естественных причин;
  • наличие повреждений, вызванных механическими воздействиями;
  • отсутствие смазки в подшипниках и прочие причины.

Причин для возникновения посторонних шумов в районе двигателя на самом деле намного больше. Каждую из них нужно рассматривать в соответствии с тем, что ей сопутствует и способствует. Рассмотрим несколько ситуаций.

Cтатор в разных типах электродвигателей

Статор – это неотъемлемый узел электрической машины, сохраняющий неподвижное состояние во время работы двигателя. Ротор – вращающаяся часть электрического мотора, передающая механическую энергию на выходной вал. Другое название ротора – якорь.

Синхронный или коллекторный двигатель

Электрический ток на ламели коллектора передается графитовыми щетками. Такой электродвигатель будет работать, как в сети постоянного, так и переменного тока. Пульсирующее магнитное поле, создаваемое обмотками статора, будет взаимодействовать с пульсирующим магнитным полем, генерируемым обмотками якоря. Ротор станет вращаться. Подобные электродвигатели широко применяются в различных бытовых и промышленных приборах: электродрелях, пылесосах, силовых приводах станков, электротранспорте.

Интересно. Двигатели такого типа имеют еще одно название – синхронные. Это означает, что скорость вращения ротора равна скорости вращения электромагнитного поля, возникающего в двигателе.

Асинхронные двигатели

Подавляющее количество электромоторов, применяющихся и в промышленности, и в быту, – это асинхронные электродвигатели с короткозамкнутыми роторами. Такие двигатели применяются в трехфазных и однофазных сетях переменного тока.


Асинхронный двигатель

Статорная конструкция собирается из большого количества стальных пластин и расположена в корпусе основания, отлитом из немагнитных металлов: чугуна или алюминия.


Наборный статор двигателя

Материал пластин – электротехническая сталь. Пластины изолированы друг от друга специальным диэлектрическим лаком. В статоре имеются продольные пазы, где размещаются три обмотки, сдвинутые относительно оси вращения электромотора на 120 градусов друг от друга. Ротор также набирается из изолированных пластин электротехнической стали. В пазы ротора уложены стержни из алюминия, реже меди, соединенные по торцам контактными кольцами. Отсюда и название – короткозамкнутый ротор. Такая конструкция, называемая «беличьим колесом», играет роль обмотки ротора.

Ниже представлен вид асинхронного электродвигателя в разрезе. Хорошо видно, что такое наборный статор.


Разрез асинхронного двигателя

Обмотки двигателя могут подключаться к трехфазной электрической сети по схеме «треугольник» или «звезда».


Варианты подключения трехфазного двигателя

Коммутация схемы производится в клеммной коробке двигателя, называемой борн или брно.

При подаче трехфазного напряжения в обмотках статора возникают пульсирующие токи, которые вызывают появление в статоре вращающегося магнитного поля. Это поле пересекает токопроводящие стержни ротора, в которых индуцируются вторичные пульсирующие токи. Результатом становится появление магнитного поля в роторе. Магнитные поля статора и ротора взаимодействуют и заставляют вращаться стержни «беличьего колеса», вместе с тем и сам ротор. Якорь вращается со скоростью несколько меньшей, чем магнитное поле статора.

Величина этой разности называется скольжением и может составлять от 2 до 8 %. Из-за наличия скольжения двигатели подобной конструкции получили название – асинхронные. Эффект скольжения физически необходим для работы асинхронного двигателя – не будет отставания вращения ротора от магнитного поля статора, не будет индуцироваться ток в стержнях ротора, исчезнет магнитное поле в якоре, приводящее во вращение ротор.

Теплоизоляция статора

Электродвигатель при работе подвержен достаточно сильному нагреву – до 100-145 0С. Для сохранения работоспособности, защиты деталей и узлов от перегрева на валу двигателя имеется крыльчатка вентилятора, производящая обдув ротора и статора. Кроме того, для защиты обмоток статора применяются различные термоизолирующие материалы, такие как:

  • Прокладки на базе компонентов из слюды и специальных картонов;
  • Термоизолирующие материалы из стеклоткани;
  • Термостойкие пропиточные лаки.

Правильное технологическое применение таких теплоизоляционных компонентов обеспечивает долгую надежную и бесперебойную работу электродвигателей.

Прозвонка асинхронного двигателя

Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:

  1. Произвести замеры сопротивления между выводами двигателя. Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
  2. Провести диагностику утечки тока на «массу». Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.

Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.

При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.

https://youtube.com/watch?v=3V0zbYIOfZY

Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.

Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.

Частые неисправности генератора автомобиля

Говорить о том, что в конкретном автомобиле или в определенный момент может выйти из строя та или иная деталь, будет слишком громко. В современных машинах вовсе тяжело предсказать, что может выйти из строя в генераторе. Все же, специалисты вывели основной список деталей генератора, которые части все изнашиваются и приходят в негодность:

  • поврежденный провод зарядки;
  • выход из строя диодного моста;
  • разрушение или износ подшипников;
  • замкнутые витки провода в обмотке статора;
  • выход из строя регулятора напряжения;
  • износ токосъемных колец;
  • износ щеток генератора;
  • повреждение / износ шкива генератора.

Среди перечисленных деталей, чаще всего из строя выходят щетки генератора. Именно они изнашиваются в первую очередь и нередко считаются расходными деталями самого генератора. Купить под замену можно как оригинальные щетки, так и подходящие по характеристикам.

Как уже говорили, нередкими бывают ситуации, когда неисправность генератора автомобиля тянет за собой выход из строя аккумуляторной батареи. Посыпались пластины, закипел электролит или вовсе недозарядка аккумулятора. В результате таких поломок неисправность аккумулятора гарантирована. Все же, рассмотрим, какие ещё могут быть неисправности автомобильного аккумулятора:

  • замкнутые пластины аккумулятора;
  • повреждение пластин внутри аккумулятора;
  • разгерметизация банок или трещины на корпусе;
  • окисление клемм;
  • нарушение правил эксплуатации и ухода за аккумулятором;
  • истек срок службы;
  • производственные дефекты или нарушение стандартов.

Распространенные неисправности аккумуляторной батареи:

  • короткое замыкание электродов/пластин батареи;
  • механическое или химическое повреждение пластин аккумулятора;
  • нарушение герметичности банок аккумуляторов — трещины корпуса аккумулятора в результате ударов или неправильной установки;
  • химическое окисление выводных клемм аккумулятора.Основными причинами указанных неисправностей являются:
  • грубые нарушения правил эксплуатации;
  • истечение срока службы изделия;
  • различные производственные дефекты.

Автомобилисту очень полезно знать основные причины неисправностей генератора, способы их устранения, а также профилактические меры по предотвращению поломок.

Все генераторы подразделяются на генераторы переменного и постоянного тока. Современный легковой транспорт оснащается генераторами переменного тока с встроенным диодным мостом (выпрямителем). Последний необходим для преобразования тока в постоянный, на котором работают электропотребители автомобиля. Выпрямитель, как правило, находится в крышке или корпусе генератора и представляет с последним одно целое.

Все электроприборы автомобиля рассчитаны на строго определенный диапазон рабочих токов по напряжению. Как правило, рабочие напряжения — в диапазоне 13,8–14,8 В. Ввиду того, что генератор «привязан» ремнем к коленчатому валу двигателя, от разных оборотов и скорости движения автомобиля, он будет работать по-разному. Именно для сглаживания и регулирования выдаваемого тока предназначен реле-регулятор напряжения, играющего роль стабилизатора и предотвращающего как скачки, так и провалы рабочего напряжения. Современные генераторы снабжены встроенными интегральными регуляторами напряжения, в просторечье именуемые «шоколадкой» или «таблеткой».

Уже понятно, что любой генератор это достаточно сложный агрегат, чрезвычайно важный для любого автомобиля.

Пошаговая диагностика электрики мультиметром или лампочкой

При диагностике и ремонте электрической части болгарки удобнее всего использовать многофункциональный тестер (сокращенное название — мультиметр). Если такого прибора под рукой нет, то для некоторых проверок подойдет отвертка с индикатором или лампочка с двумя проводами. В процессе ремонта мультиметр позволяет измерять как величины напряжения и тока, так и сопротивление обмоток двигателя. Индикатор и лампочка могут показывать только наличие или отсутствие напряжения.

Диагностика обрыва питания

Пожалуй, самой распространенной неисправностью электрооборудования болгарки является обрыв проводов питания внутри оболочки силового кабеля. Для диагностики и ремонта такого повреждения достаточно разобрать заднюю ручку болгарки и проверить напряжение на клеммах перед выключателем. Другой способ — это отсоединить клеммы кабеля и с помощью мультиметра проверить на обрыв сопротивление каждой его жилы.

Проверка статора и его перемотка

Для проверки статора электродвигателя болгарки необходимо отсоединить обе его обмотки от цепи питания, а затем замерить их сопротивление мультиметром в диапазоне 200 Ом. На исправной обмотке прибор покажет сопротивление около одного ома, а на неисправной (с обрывом) — десятки или сотни омов. Если обмотка вышла из строя в результате замыкания, то нагар, как правило, можно увидеть с внутренней стороны корпуса статора. Проверить статор на межвитковое замыкание обычным тестером невозможно – для этого существуют специальные индукционные приборы. Единственные способы ремонта статора — это его замена или перемотка. Второе возможно только при наличии соответствующей квалификации, поэтому чаще всего статор просто меняют.

Диагностика якоря тестером

Проверять якорь болгарки необходимо как на обрыв обмоток, так и на их замыкание на сердечник. В первом случае сопротивление замеряется по кругу между двумя соседними пластинами коллектора, расположенного на валу ротора. Все значения должны быть одинаковы (в пределах одного ома), а значительное отличие указывает на обрыв. Во втором замер производится между магнитопроводом ротора и пластинами коллектора. Для поиска межвиткового замыкания, как и в случае со статором, необходимо воспользоваться специальным прибором. При обнаружении неисправности необходимо принять решение, каким способом производить ремонт: перемоткой якоря или его заменой на новый. Самостоятельно перемотать обмотки якоря без соответствующих навыков и оборудования нереально, а перемотка в сервисе будет стоить практически столько же, сколько и новый якорь. Поэтому оптимальный вариант ремонта — это покупка и самостоятельная замена якоря.

Читать также: Торцевая пила по дереву какая лучше

Проверка блока пуска и управления

Диагностика электронных компонентов болгарки сводится к определению исправности отдельных блоков, а ремонт (если нет навыков в радиотехнике) — к их полной замене. Устройство плавного пуска можно проверить стрелочным амперметром, сравнив скачок тока с ним и без него. Для точной диагностики блока поддержания оборотов под нагрузкой потребуется осциллограф. Хотя для того, чтобы понять, исправен он в принципе или нет, достаточно просто понаблюдать за поведением болгарки на разных режимах.

Проверка угольных щеток

В процессе работы угольные щетки стираются и при достижении минимального размера подлежат замене. Первый признак проблем со щетками — неравномерное со вспышками искровое кольцо вокруг коллектора. У некоторых моделей для замены и проверки щеток на корпусе предусмотрены круглые отверстия с винтовыми крышками. Но у большинства болгарок для того, чтобы их поменять, приходится полностью, как при ремонте, разбирать корпус или заднюю рукоятку.

Диагностика кнопки пуска и регулятора оборотов

Самая распространенная неисправность в электрике болгарки — это выход из строя пусковой кнопки, что чаще всего является следствием попадания в нее пыли. Проверить работоспособность кнопки можно с помощью мультиметра или индикаторной отвертки, произведя замер напряжения на ее выходном контакте. Ремонту она обычно не подлежит и просто заменяется на новую. Определить неисправность регулятора скорости вращения еще проще: при вращении колесика он или меняет число оборотов шпинделя или же нет. Если нет навыков в ремонте таких устройств, то проще за несколько сот рублей купить новый.

Что за преобразователь, зачем он включен в схему генератора?

Для того, чтобы сделать стартер легче, его рассчитывают под напряжение 24 В. В этом случае, при той же мощности он потребляет меньше ток, и значит длинные провода, которые идут к нему от аккумулятора можно сделать тоньше. Все становится надежнее, контакты, щетки, втягивающее.

24 Вольта получаются последовательным соединением двух аккумуляторов. Для того, чтобы заряжать второй аккумулятор нужно подавать на них напряжение, превышающее 24 В. Это напряжение получают удвоением напряжения генератора. Преобразователь получает переменное напряжение от генератора и выдает свое напряжение 14 В. Его можно прибавить к напряжению генератора и получается 28 В.

Основные неисправности генераторов переменного тока

Обрыв обмотки возбуждения

При этой неисправности в обмотке статора индуктируется э. д. с. до 3—4 В, обусловленная остаточным магнетизмом стали ротора.

Нарушение контакта в щеточном узле вследствие окисления или замасливания контактных колец генератора, сильного износа или зависания щеток в щеткодержателях, уменьшения упругости пружин щеткодержателей и т. п.

Неисправность сопровождается увеличением сопротивления цепи возбуждения генератора, поэтому снижается сила тока возбуждения, а вместе ё этим падает мощность генератора.

Напряжение генератора до номинальной величины достигает только при повышенной частоте вращения ротора.

Витковое замыкание

в катушке обмотки возбуждения вызывается теми же причинами и приводит к аналогичным последствиям, что и в генераторах постоянного тока.

Определяется витковое замыкание измерением сопротивления обмотки омметром.

Замыкание обмотки возбуждения на корпус

чаще всего происходит в местах вывод концов катушек к контактным кольцам. Короткозамкнутая катушка обесточивается, магнитный поток возбуждения резко снижается, поэтому напряжение генератора станет меньшим и ток от него во внешнюю цепь не поступает.

Эту неисправность определяют при помощи вольтметра или контрольной лампы напряжением 220—500 В, подключением одного проводника на железо ротора, а другого — на контактное кольцо.

Если в течение 1 мин тока в цепи не будет, то изоляция обмотки хорошая.

Обрыв в цепи фазовой обмотки статора.

При наличии обрыва соединительного провода одной фазы генератора к зажиму выпрямителя фаза выключается, а поэтому значительно увеличивается сопротивление обмотки статора, что снижает мощность генератора.

При обрыве двух фаз прерывается вся цепь обмотки статора, и генератор не будет работать.

При разобранном генераторе для определения обрыва в фазовой обмотке статора необходимо поочередно подключать к аккумуляторной батарее через лампочку или вольтметр по две фазы обмотки.

Наличие обрыва выключает цепь, и тока в ней не будет.

Замыкание обмотки статора на корпус

происходит вследствие механического или теплового повреждения изоляции обмотки и выводных зажимов. Неисправность значительно снижает полезную мощность генератора в результате короткого замыкания неисправных фазовых обмоток через выпрямитель и корпус.

Эти неисправности определяются контрольной лампой напряжением 220—500 В подключением одного проводника на сердечник статора, а другого — на один из зажимов обмотки статора. Дефектную изоляцию заменяют новой.

Кроме названных неисправностей, в генераторах постоянного и переменного тока возникают также неисправности механического характера, например износ и разрушение подшипников, износ шеек вала якоря (ротора), разработка шпоночной канавки вала и шкива, повреждение резьбы на валу и в гайках и др.

Выявление и устранение подобных неисправностей не представляет больших трудностей.

Основные неисправности выпрямителей генератора

Замыкание на корпус зажима «+».

Эта неисправность вызывает закорачивание выпрямителя, и в цепи — обмотка статора генератора — выпрямитель —устанавливается большая сила тока, в результате чего происходит их перегрев и возможно разрушение изоляция обмотки и пробой запирающего слоя диодов выпрямителя.

Пробой диодов

чаще всего происходит вследствие увеличения напряжения генератора, что может быть при обрыве основной обмотки регулятора напряжения, обрыве провода, соединяющего реле-регулятор с корпусом, неправильной регулировке регулятора напряжения, отсоединении провода от зажима «+» генератора.

Кроме того, пробой диодов происходит при перегреве выпрямителя током большой силы, который проходит через них, а также при механическом повреждении диодов, при неправильном соединении зажимов выпрямителя (когда минусовой зажим соединяют не с корпусом, а с зажимом реле-регулятора).

В месте пробоя происходит расплавление покровного слоя металла, в результате чего образуется короткозамкнутый участок между электродами диода.

В случае пробоя диодов будет большая сила разрядного тока при неработающем генераторе.

Старение диодов.

С течением времени диоды расформировываются, стареют, что повышает сопротивление в цепи выпрямленного тока. Эта Неисправность вызывает увеличение падения напряжения на зажимах диодов при прохождении тока в прямом направлении и увеличение силы обратного тока. В результате аккумуляторная батарея будет недозаряжаться.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Глобал драйв
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: